# Analogues of Intermediates in the Action of Pig Kidney Prolidase<sup>†</sup>

## Anna Radzicka and Richard Wolfenden\*

Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
Received August 8, 1990; Revised Manuscript Received November 30, 1990

ABSTRACT: Dicarboxylic acids, resembling the collected substrates for the reverse peptide bond forming reaction, were bound several orders of magnitude more tightly than substrates, products, or previously known competitive inhibitors of reactions catalyzed by pig kidney prolidase (EC 3.4.13.9), a dipeptidase that cleaves peptide bonds to the nitrogen atom of proline. Other inhibitors containing a phosphoryl or phosphonyl group in addition to a carboxyl substituent were bound even more tightly, in a manner consistent with their possible resemblance to tetrahedral intermediates in substrate hydrolysis. These included several analogues of phosphoenol pyruvate, of which the most potent was (Z)-3-bromophosphoenolpyruvate ( $K_i = 4.6 \times 10^{-9}$  M).  $K_i$  values were found to vary with changing pH in a manner consistent with displacement of a hydroxide ion from the active site.

Prolidase (EC 3.4.13.9) is a manganese-dependent hydrolase that cleaves dipeptides involving the nitrogen atom of proline (Bergmann & Fruton, 1937) in the trans configuration (King et al., 1989). This enzyme is present in microorganisms and many mammalian tissues, where it is believed to catalyze terminal degradation of exogenous and endogenous proteins, permitting recycling or renal excretion of proline and hydroxyproline [for a review, see Walter et al. (1980)]. In humans, a deficiency of prolidase results in a complex clinical syndrome involving mental retardation [for a review, see Kaloustian et al. (1982)].

This paper describes an effort to develop strong competitive inhibitors of prolidase. In designing inhibitors of this enzyme. our intent had been to combine structural features of the two substrates for reversal of dipeptide hydrolysis within a single molecule. Sparing an enzyme the entropic difficulty of gathering the binding determinants of two substrate molecules from dilute solution, a multisubstrate analogue inhibitor should exhibit a binding affinity considerably higher than the affinities of the two substrates combined (Byers & Wolfenden, 1972). Accordingly, it seemed possible that compounds related to 1,2-cyclopentanedicarboxylic acid (Scheme I) might serve as effective inhibitors of prolidase. In a preliminary communication (Radzicka & Wolfenden, 1990), we noted the effectiveness of this inhibitor and also the unexpectedly powerful inhibition of this enzyme by phosphoenolpyruvate, an intermediate in glycolysis. We have since uncovered several inhibitors that are even more potent than phosphoenolpyruvate and have investigated the variation of  $K_i$  with pH with results suggesting that binding is accompanied by displacement of a hydroxide ion from the active site. Inhibitors containing phosphoryl and phosphonyl substituents are found to be unusually potent, perhaps because these inhibitors resemble sp<sup>3</sup>-hybridized oxyanion intermediates formed during substrate hydrolysis.

## EXPERIMENTAL PROCEDURES

Materials. Compounds included in the present study, referred to by number here and in subsequent text, are shown by name and structure in Table I. Compounds 3, 8-10, 12-15, 18, 20-21, 27, 29-30, 33, 35, 37-38, 41-43, 46-47,

50, 53, 55, 57, and 64 as the monopotassium salt and cis-1,2-cyclohexanedicarboxylic anhydride and 4-morpholineethanesulfonic acid (MES) were obtained from Aldrich Chemical Co. Compounds 2, 7, 26, 31–32, 36, 45, and 54, Gly-Pro, DEAE-Sephacel, and pig kidney prolidase were obtained from Sigma Chemical Co. Compounds 17, 22, 24-25, 28, 49, and 60-62 were purchased from Fluka Chemical Corp., Compound 1 was purchased from EM Science Co. and compound 4 from the California Corp. for Biochemical Research; compounds 5 and 6 were purchased from Calbiochem-Behring Co. and compound 11 and manganous chloride from Allied Chemical Co.; compound 16 was obtained from Pfaltz & Bauer, Inc., compounds 23 and 44 were from Alfa Products, Inc., compound 34 was from Serva Fine Biochemicals, Inc., compound 39 from Monsanto Co., compound 48 from Fairfield Chemical Co., Inc., and Met-Pro from Bachem Bioscience Inc. Compound 19 was a gift from E. R. Squibb & Sons, Inc. Compound 52 was obtained by hydrolysis of cis-1,2-cyclohexanedicarboxylic anhydride, and compound 59 was prepared by the method of Fleury and Courtois (1941). Compounds 51, 56, 61, 63, 65, 66, and 67 were kindly provided by Drs. M. H. O'Leary and J. A. Peliska of the University of Wisconsin; and compounds 39 and 58 were a generous gift from Dr. D. Grobelny of the University of Kentucky.

Enzyme Activation and Assay. Porcine kidney prolidase was activated in 0.05 M Tris-HCl buffer, pH 8.0, containing MnCl<sub>2</sub> (27 mM) and glutathione (1 mM), at 37 °C for 45 min (Smith et al., 1944; Davies & Smith, 1957). The activity of prolidase was assayed by monitoring the disappearance of the peptide chromophore at 222 nm, where  $\Delta e_{\rm M}$  for Gly-Pro was -904. Assays were routinely performed in 0.01 M K<sup>+</sup>-MES buffer, pH 6.0, at 25 °C with 0.7-1.3 units of enzyme in a volume of 2 mL, with Gly-Pro as the substrate ( $K_{\rm m}=1.2\times10^{-3}$  M). MES buffers were used in all experiments, because the activity of the enzyme was strongly inhibited in buffers such as acetate and phosphate but was not much affected by K<sup>+</sup>-MES even at 10-fold higher concentrations than those used

<sup>&</sup>lt;sup>†</sup>This work was supported by research Grants AI-25697 and GM-18325 from the National Institutes of Health.

<sup>\*</sup>To whom correspondence should be addressed.

| # Name   Structure   K <sub>1</sub> [M]   37. Raconk acid   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.4767   47.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table        | l: Inhibitors of Pig Kidney | Prolidase                                                      |                      |             |                          |                                                                                                  | ·                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|----------------------------------------------------------------|----------------------|-------------|--------------------------|--------------------------------------------------------------------------------------------------|-----------------------|
| 1. Acetic acid 2. City-Pro 3. Ammonitum sulphate 4. 1-Aminocyclopariae -1-carboxylic acid 5. DL-Aspartic acid 6. Fumaric acid 7. L-Proline 8. 3-Mercapiopropionic acid 9. 2-Mercapionicotinic acid 9. 2-Mercapionicotinic acid 9. 2-Mercapionicotinic acid 9. 2-Mercapionicotinic acid 13. 2-3-Pyridinedicarboxylic acid 13. 2-3-Pyridinedicarboxylic acid 13. 2-3-Pyridinedicarboxylic acid 13. 2-3-Pyridinedicarboxylic acid 14. Malatic acid 15. DL-trans-12-Cycloporto-paraelicarboxylic acid 16. Capitopril 17. Capitopril 18. Capitopril 18. Capitopril 19. Capitopril 19. Capitopril 19. Capitopril 20. Methylpaccinic acid 21. Coalic acid 22. Ehrylpacciphosphonic acid 23. Ehrylpacciphosphonic acid 24. 2-3-Pipocysuccinic acid 25. Chalacetic acid 26. Chalacetic acid 27. Coalic acid 28. Methylpaccinic acid 29. Methylpaccinic acid 20. Methylpaccinic acid 21. Coalic acid 22. Ehrylpacciphosphonic acid 23. Ehrylpacciphosphonic acid 24. 2-3-Pipocysuccinic acid 25. Chalacetic acid 26. Coalic acid 27. Coalic acid 28. Methylpacciphosphonic acid 29. Methylpaccinic acid 20. Methylpaccinic acid 21. Coalic acid 22. Ehrylpacciphosphonic acid 23. Ehrylpacciphosphonic acid 24. 2-3-Pipocysuccinic acid 25. Chalacetic acid 26. Coalic acid 27. Coalic acid 28. Methylpacciphosphonic acid 29. Capitopril 20. Methylpacciphosphonic acid 20. Methylpacciphosphonic acid 20. Capitopril 20. Methylpacciphosphonic acid 21. Capitopril 22. Deportine acid 23. Methylpacciphosphonic acid 24. Capitopril 25. Citric acid 26. Coalic acid 27. Coalic acid 28. Methylphosphonic acid 29. Phosphonopropril acid 20. Capitopril 20. Methylphosphonic acid 20. Capitopril 20. Methylphosphonic acid 20. Capitopril 20. Capitopril 20. Dalacetic acid 20. Capitopril 20. Dalacetic acid 20. Capitopril 20. Capitopril 20. Dalacetic acid 20. Capitopril 20. Capitopril 20. Capitopril 20. Dalacetic acid 20. Capitopril 20. Capitopril 20. Capitopril 20. Capitopril 20. Capitopril                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                             |                                                                | K: [M]               | 27          | The contract of          | CH <sub>2</sub>                                                                                  | 47.105                |
| 1. Aceis and 2. Gip-Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | π            | Ivaille                     | Structure                                                      | IN] [IVI]            | 37.         | Itaconic acid            | 1                                                                                                | 4.7x10 <sup>-5</sup>  |
| 2. Gly-Pro 3. Ammonium sulphate endopolic acid 4. 1-Aminocyclopentane -1-carboylic acid 5. DL-Aspartic acid 6. Fumaric acid 7. L-Proline 8. 3-Mercaptopropionic acid 9. 2-Mercaptonicotinic acid 10. DL-Serine phosphate 11. Succinic acid 11. Succinic acid 12. 2-3-Pyridinedicarboxylic acid 13. 2-3-Pyridinedicarboxylic acid 14. Malaic acid 15. DL-trans-1-2-Cyclopropanelicarboxylic acid 16. Malonic acid 17. (2)-6-Eposyricarbally-lic acid 18. Hearthoroglutaric acid 19. 2-Merphanedicarboxylic acid 19. Captopril 10. Capt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.           | Acetic acid                 | CH4COOH                                                        | 1.1x10 <sup>-2</sup> | 38.         | 3,4-Furandicarboxylic    | ر<br>د                                                                                           | 3.8×10 <sup>-5</sup>  |
| 3. Ammonium sulphate 4. 1. Aminocyclopentane -1-carboxylic acid 5. D.L-Asparic acid 6. Fumaric acid 7. L-Proline 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.           | Gly-Pro                     |                                                                | 1.2x10 <sup>-3</sup> |             | •                        | ноос —соон                                                                                       |                       |
| 1. 1-Aminory/dopentane 1-carboxy/lic acid 2. D.L-Aspartic acid 3. D.L-Aspartic acid 3. 3-Mertaptopropionic acid 3. 3-Mertaptoropionic acid 3. 2-Aretylenedicarboxy/lic acid 3. 3-Ayrotinedicarboxy/lic acid 3. 3-Ayrotinedicarboxy/lic acid 3. 4-Atol 4. Meltylenediphosphonic acid 4. Meltylenediphosphonic acid 4. Caphylenediphosphonic acid 4. Caphylenediphosphonic acid 5. D.L-Serine phosphate 8. 3-Mertaptoropionic acid 1. Maleic acid 1. Meltylenediphosphonic acid 2. Aretylenedikarboxylic acid 3. Caphylinediphosphonic acid 3. Sixtorio acid 3. Sixtorio acid 3. Sixtorio acid 3. Maleic acid 3. Adiple acid 3. Caphylenediphosphonic acid 3. Meltylenediphosphonic acid 3. Sixtorio acid 3. Sixtorio acid 3. Sixtorio acid 3. Meltylenediphosphonic acid 3. Caphylinediphosphonic acid 3. Caphylinediphosphonic acid 3. Sixtorio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | •                           |                                                                |                      | 39.         | 2-Phosphinocyclohexa-    | ССООН                                                                                            | 2.4×10 <sup>-5</sup>  |
| 1-carboxylic add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.           | Ammonium sulphate           | 041 f0/2004                                                    | 9.6×10 <sup>-3</sup> |             | necarboxylic acid        | PO <sub>2</sub> H <sub>2</sub>                                                                   |                       |
| Second   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.           | 1-Aminocyclonentane-        | $\wedge$                                                       | >5×10-3              | <b>4</b> 0. | N-(Phosphonomethyl)-     |                                                                                                  | 2.3x10 <sup>-5</sup>  |
| 5. DL-Aspartic acid   1.5x10-3   1.5x10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                             | NH <sub>2</sub>                                                | - UNIO               |             | glycine                  |                                                                                                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5            | -                           |                                                                | 1.2-10-3             | <b>4</b> 1. | Methylenediphospho-      | H <sub>2</sub> O <sub>3</sub> P - CH <sub>2</sub> PO <sub>3</sub> H <sub>2</sub>                 | 1.8x10 <sup>-5</sup>  |
| 8. 3-Mercaptopropionic acid of 1.5x10-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J.           | DL-Aspartic acid            | -                                                              | 1.5x10 °             |             | ·                        |                                                                                                  | 5                     |
| 2. Mercaptorpopionic acid   1. Succinic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.           | Fumaric acid                | HOOC                                                           | >1x10 <sup>-3</sup>  |             | = :                      |                                                                                                  | _                     |
| 8. 3-Mercaptopropionic acid acid 9. 2-Mercaptonicotinic acid 9. 2-Mercaptonicotinic acid 10. DL-Serine phosphate 11. Succinic acid 12. Acetylenedicarboxylic acid 12. 2-Psyridinedicarboxylic acid 13. 2-3-Pyridinedicarboxylic acid 15. DL-trans-12-Cyclopropanedicarboxylic acid 16. Malonic acid 16. Malonic acid 16. Malonic acid 17. Cycloperopanedicarboxylic acid 18. Headluoroglutaric acid 19. Captopril 19. Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7            | I -Proline                  | н , соон                                                       | 7.0~1.0-4            | 43.         | •                        |                                                                                                  | 1.5×10 <sup>-5</sup>  |
| acid  9. 2-Mercaptonicotinic acid  9. 2-Mercaptonicotinic acid  9. 2-Mercaptonicotinic acid  10. Di-Serine phosphate  11. Succinic acid  12. Acetylenedicarboxylic acid  13. 2,3-Pyridinedicarboxylic acid  14. Maleic acid  15. Di-trans-12-Cyclopropanedicarboxylic acid  16. Malonic acid  17. (2)-ris-Epoxytricarbally-lic acid  18. Hexafluoroglutaric acid  19. Captopril  10. Descrine phosphate  10. Di-Serine phosphate  11. Succinic acid  12. Acetylenedicarboxylic acid  13. 2. Prosphonolic acid  14. Atalot  15. Di-Trans-12-Cyclopropa-  16. Hexafluoroglutaric acid  16. Malonic acid  18. Hexafluoroglutaric acid  18. Hexafluorogl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,,           | D I Tollike                 | HN —— COOH                                                     | 7.0210               | 44          | •                        |                                                                                                  | 1 3 - 10 - 5          |
| 9. 22-Mercaptonicotinic acid  10. DL-Serine phosphate  11. Succinic acid  12. Acetylenedicarboxylic acid  13. 22-Pyridinedicarboxylic acid  14. Maleic acid  15. DL-trans-12-Cyclopropanedicarboxylic acid  16. Malonic acid  17. (Δρ-δ-βρονγιτιατballylic acid  18. Hexafluoroglutaria acid  19. Captopril  20. Methylsuccinic acid  21. Cools acid  22. Esphthalic acid  23. Ethylenediphosphonic acid  24. 22-Bpoxysuccinic acid  25. Ozalacetic acid  26. Methylphosphonic acid  27. Do-3-Cools acid  28. Tricarballylic acid  29. Phosphonoformic acid  20. Dilycolic acid  20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.           |                             | HS - CH <sub>2</sub> CH <sub>2</sub> COOH                      | 6.3×10 <sup>-4</sup> | 44.         | • •                      | H <sub>2</sub> O <sub>3</sub> P - CH <sub>2</sub> CH <sub>2</sub> PO <sub>3</sub> H <sub>3</sub> | 1.3x10                |
| 10. DL-Serine phosphate   1. Succinic acid   1. Succinic acid   1. Succinic acid   1. Maleic acid   1. Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                             | ^                                                              |                      | 45.         |                          | 0                                                                                                | 1.2×10-5              |
| 10. DL-Serine phosphate 11. Succinic acid 12. Acetylenedicarboxylic acid 13. 2,3-Pyridinedicarboxylic acid 14. Maleic acid 15. DL-trans-1,2-Cycloptro-paneticarboxylic acid 16. Maloric acid 17. (Δ)-δε Εροχντίταrbally-lic acid 18. Hexafluorogitutaric acid 19. Captopril 19. Captopri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.           | 2-Mercaptonicotinic acid    |                                                                | 5.6x10 <sup>-4</sup> |             | = <b>6</b>               |                                                                                                  | 1, <b>2</b> ,410      |
| 11. Succinic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10           | DI-Serine phoenhate         | N ·                                                            | 5 1~10-4             | 46.         | 3-Hydroxy-3-methylglu-   | I                                                                                                | 1.1×10 <sup>-5</sup>  |
| 12. Acetylenedicarboxylic acid acid   4.5x10-4   47. cis1_2.Cyclobutanedicarboxylic acid   4.4x10-4   48. 4+Phosphonobutyric acid   4.4x10-4   48. 4+Phosphonobutyric acid   4.4x10-4   49. 2-Carboxyphenyl   phosphate   4.0x10-4   49. 2-Carboxyphenyl   4.0x10-4   49. 2-Carboxyphenyl   phosphate   4.0x10-4   49. 2-Carboxyphenyl   phosphate   4.0x10-4   49. 2-Carboxyphenyl   phosphate   4.0x10-4   49. 2-Carboxyphenyl   4.0x10-4   49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                             | н <sub>2</sub> 0 <sub>3</sub> PO – СН <sub>2</sub> — СН — СООН | 5.1210               |             | taric acid               | HOOC - CH2 C - CH2 COOH                                                                          |                       |
| 2.2-Pyridinedicarboxylic acid   4.4x10-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                             | HOOC - CH <sub>2</sub> CH <sub>2</sub> COOH                    |                      | 47          | cis 1.2 Cwalabutanadian- |                                                                                                  | 9 E10-6               |
| 13. 2.3-Pyridinedicarboxylic acid 14. Maleic acid 15. DL-trans-1,2-Cyclopropanedicarboxylic acid 16. Malonic acid 17. (b)-cis-Epoxytricarbally-lic acid 18. Hexafluoroglutaric acid 19. Captopril 19. Captopril 19. Captopril 20. Methylsuccinic acid 19. Captopril 21. Oxalic acid 22. Isophthalic acid 23. Ethylenediphosphonic acid 24. 2.3-Ppoxysuccinic acid 25. Oxalacetic acid 26. Methylphosphonic acid 27. D(+)-2-Phosphonoglyceric acid 28. Tricarballylic acid 29. Phosphonoformic acid 20. Diglycolic acid 30. Diglycolic acid 31. Adipic acid 32. Citric acid 33. 3-Methylenecyclopropanet-mans-1,2-dicarboxylic acid 34. DL-3-Phosphoglyceric acid 35. Cyclopentanecarboxylic acid 36. Cyclopentanecarboxylic acid 37. Cyclopentanecarboxylic acid 38. Cyclopentanecarboxylic acid 39. DL-3-Phosphoglyceric acid 30. Diglycolic acid 31. DL-3-Phosphoglyceric acid 31. DL-3-Phosphoglyceric acid 32. Cyclopentanecarboxylic acid 33. Sylopentanecarboxylic acid 34. DL-3-Phosphoglyceric acid 35. Cyclopentanecarboxylic acid 36. Cyclopentanecarboxylic acid 37. Cyclopentanecarboxylic acid 38. Aleftylenecyclopropanetacid 39. Cyclopentanecarboxylic acid 30. Cyclopentanecarboxylic acid 31. DL-3-Phosphoglyceric acid 32. Cyclopentanecarboxylic acid 33. Cyclopentanecarboxylic acid 34. DL-3-Phosphoglyceric acid 35. Cyclopentanecarboxylic acid 36. Cyclopentanecarboxylic acid 37. Cyclopentanecarboxylic acid 38. Aleftylenecyclopropanetacid 39. Cyclopentanecarboxylic acid 39. Cyclopentanecarb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.          |                             | HOOC - C≋C - COOH                                              | 4.5×10 <sup>-4</sup> | 47.         | •                        | 1 1                                                                                              | 6.5X10-0              |
| add  14. Maleic acid  15. DL-trans-1,2-Cyclopropanedicarboxylic acid  16. Maloinc acid  17. (d)-cis-Epoxytricarbally- lic acid  19. Captopril  10. Captopril                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12           |                             | CCCH                                                           | 4.410-4              | 48.         | •                        |                                                                                                  | 2 4×10-6              |
| 14. Maleic acid  15. DL-trans-1,2-Cyclopropanedicarboxylic acid  16. Malonic acid  17. (t)-cis-Epoxytricarbally- lic acid  18. Hexafluoroglutaric acid  19. Captopril  19. Co-α <sub>1</sub> , α-α <sub>1</sub> α-α <sub>1</sub> α-α <sub>2</sub> α-α <sub>1</sub> α-α <sub>2</sub> α-α <sub>2</sub> α-α <sub>3</sub> α-α <sub>4</sub> α-α | 13.          | •                           |                                                                | 4.4X10 <sup>-4</sup> | 20,         | •                        | 1404 - 414 - 414 - 40011                                                                         | 2.4210                |
| 15. DL-trans-1,2-Cyclopro- panedicarboxylic acid   Hooc—Gi <sub>1</sub> —COOH   Hooc—Gi <sub>2</sub> —COOH   Hooc—Gi <sub>3</sub> —COOH   Hooc—Gi <sub>3</sub> —COOH   Hooc—Gi <sub>4</sub> —C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14           |                             | н н<br>N                                                       | 4 1-10-4             | 49.         |                          | соон                                                                                             | 1.7×10-6              |
| 1. DL-trans-1,2-Cyclopropanedicarboxylic acid   Hooc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.          | Maleic acid                 | HOOC                                                           | 4.1310               |             |                          | OPO <sub>3</sub> H <sub>2</sub>                                                                  |                       |
| Malonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.          | DL-trans1,2-Cyclopro-       |                                                                | 4.0×10 <sup>-4</sup> | 50.         | = =                      | СООН                                                                                             | 1.2×10 <sup>-6</sup>  |
| 16. Malonic acid 17. (x)-cis-Epoxytricarbally- lic acid 18. Hexafluoroglutaric acid 19. Captopril    Hoc − G <sub>1</sub> − G <sub>2</sub> − Coch   3.5x10 <sup>4</sup>   52. cis-1,2-Cyclohexane   dicarboxylic acid 19. Captopril    Hoc − G <sub>1</sub> − G <sub>2</sub> − Coch   3.1x10 <sup>4</sup>   52. x10 <sup>4</sup>   54.   Homophthalic acid   Hoc − G <sub>1</sub> − G <sub>2</sub> − Coch   2.7x10 <sup>4</sup>   55.   Homophthalic acid   Hoc − G <sub>1</sub> − G <sub>2</sub> − Coch   2.0x10 <sup>4</sup>   55.   Homophthalic acid   Hoc − G <sub>1</sub> − G <sub>2</sub> − Coch   2.0x10 <sup>4</sup>   56. (E)-3-Cyclohexane   dicarboxylic acid   Homophthalic acid   Hoc − G <sub>2</sub> − Coch   1.6x10 <sup>4</sup>   56. (E)-3-Cyclohexane   dicarboxylic acid   Homophthalic acid   Hoc − G <sub>2</sub> − Coch   1.6x10 <sup>4</sup>   56. (E)-3-Cyclohexane   dicarboxylic acid   Homophthalic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | panedicarboxylic acid       | HOOC                                                           |                      |             |                          | ~                                                                                                |                       |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.          | Malonic acid                |                                                                | 4.0×10 <sup>-4</sup> | 51.         | • •                      | - · II                                                                                           | 9.7×10 <sup>-7</sup>  |
| 18.   Hexaflurorglutaric acid   Hocc - Cry - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 <b>7</b> . | (±)-cis-Epoxytricarbally-   | СООН — СООН                                                    | 3.5×10 <sup>-4</sup> | 50          |                          | ~ 1C00H                                                                                          |                       |
| 19. Captopril  10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                             | ноос соон                                                      |                      | 52.         | •                        | $\sim$                                                                                           | 7.9×10 <sup>-7</sup>  |
| 20. Methylsuccinic acid  10. Methylsuccinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                             | HOOC - CF <sub>2</sub> - CF <sub>2</sub> - COOH                | 3.1×10 <sup>-4</sup> | 53          |                          |                                                                                                  | E 010-7               |
| 20. Methylsuccinic acid HOCC—CH <sub>1</sub> CCOH HOCC—CH <sub>2</sub> —CH <sub>3</sub> —COH HOCC—CH <sub>3</sub> —CCOH HOCC—CH <sub>3</sub> —COH HOCC—CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.          | Captopril                   |                                                                | 2.7×10 <sup>-4</sup> |             |                          | _                                                                                                | _                     |
| 21. Oxalic acid HOC—CH; HOCH 2.1x10 <sup>-4</sup> 22. Isophthalic acid HOC—CH; —CH; —CH; —TO; H; 1.7x10 <sup>-4</sup> 23. Ethylenediphosphonic acid 2.3-Epoxysuccinic acid HOC—CH; —C—COOH 1.6x10 <sup>-4</sup> 24. 2.3-Epoxysuccinic acid HOC—CH; —C—COOH 1.6x10 <sup>-4</sup> 25. Oxalacetic acid HOC—CH; —C—COOH 1.6x10 <sup>-4</sup> 26. Methylphosphonic acid HOC—CH; —C—COOH 1.3x10 <sup>-4</sup> 27. D(+)-2-Phosphoglyceric acid HOC—CH; —C—COOH 1.3x10 <sup>-4</sup> 28. Tricarballylic acid HOC—CH; —CH—CH—COOH 1.3x10 <sup>-4</sup> 29. Phosphonoformic acid HOC—CH; —CH—CH—COOH 1.2x10 <sup>-4</sup> 30. Diglycolic acid HOC—CH; —COH 1.2x10 <sup>-4</sup> 31. Adipic acid HOC—CH; —CH; —COOH 1.2x10 <sup>-4</sup> 32. Citric acid HOC—CH; —CH; —COOH 1.2x10 <sup>-5</sup> 33. 3-Methylenecyclopropane-trans-1,2-dicarboxylic acid HOC—CH; —CH—COOH 1.2x10 <sup>-5</sup> 34. DL-3-Phosphoglyceric acid HOC—CH; —COH 1.2x10 <sup>-5</sup> 35. Cyclopentanecarboxylic acid HOC—CH; —COH 1.2x10 <sup>-5</sup> 36. (E)-3-Cynnophospho-enclic acid HoC; —CCOH 1.2x10 <sup>-6</sup> 37. Tricarballylic acid HOC—CH; —COOH 1.3x10 <sup>-4</sup> 38. Tricarballylic acid HOC—CH; —COH 1.2x10 <sup>-6</sup> 39. Phosphonoformic acid HOC—CH; —COH 1.2x10 <sup>-6</sup> 31. Adipic acid HOC—CH; —COH 1.2x10 <sup>-5</sup> 32. Citric acid HOC—CH; —COH 1.2x10 <sup>-5</sup> 33. 3-Methylenecyclopropane-trans-1,2-dicarboxylic acid HOC—CH; —COH 1.2x10 <sup>-5</sup> 34. DL-3-Phosphoglyceric acid HOC—CH; —COH 1.2x10 <sup>-5</sup> 35. Cyclopentanecarboxylic acid HOC—CH; —COH 1.2x10 <sup>-5</sup> 36. (E)-3-Cynnophospho-enclopyruvic acid HoC; —COH 1.3x10 <sup>-7</sup> 37. Tricarballylic acid HOC—CH; —COH 1.3x10 <sup>-4</sup> 38. Tricarballylic acid HOC—CH; —COH 1.2x10 <sup>-5</sup> 39. Phosphonoformic acid HoC—CH; —COH 1.2x10 <sup>-5</sup> 39. Phosphonophospho-HoC; —COH 1.2x10 <sup>-5</sup> 39. Phosphonophospho-HoC; —COH 1.2x10 <sup>-6</sup> 39. Phosphonophospho-HoC; —CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20           | Mathulaussinia asid         |                                                                | 2 2-10-4             | 51.         | Tiomophinane acid        | 1 1                                                                                              | J.3X10 '              |
| 22. Isophthalic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •                           | HOOC — ⊂H³ ⊂H COOH                                             |                      | 55.         | trans-DL-1,2-Cyclopenta- | COOH                                                                                             | 5.1x10 <sup>-7</sup>  |
| 23. Ethylenediphosphonic acid acid 24. 2,3-Epoxysuccinic acid 45. Oxalacetic acid 46. Moc — CH <sub>1</sub> — CH <sub>2</sub> — COOH 1.6x10-4 25. Oxalacetic acid 46. Moc — CH <sub>2</sub> — COOH 1.6x10-4 27. D(+)-2-Phosphoglyceric acid 47. D(+)-2-Phosphoglyceric acid 48. Phosphonoformic acid 49. Phosphonomethyl)- acid 49. Phosphonoformic acid 49. Phosphonomethyl)- acid 49. Phosphonoformic acid 49.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                             | _                                                              |                      |             |                          |                                                                                                  |                       |
| 23. Ethylenediphosphonic acid acid 24. 2,3-Epoxysuccinic acid 25. Oxalacetic acid 26. Methylphosphonic acid acid 27. D(+)-2-Phosphoglyceric acid 28. Tricarballylic acid 29. Phosphonoformic acid 30. Diglycolic acid 40. Diglycol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.          | Isophthalic acid            | ноос                                                           | 2.0x10 <sup>-4</sup> | 56.         |                          | · · · · · · · · · · · · · · · · · · ·                                                            | 2.0×10 <sup>-7</sup>  |
| acid  24. 2,3-Epoxysuccinic acid  400C-CH <sub>3</sub> - C-COOH  25. Oxalacetic acid  400C-CH <sub>3</sub> - C-COOH  1.6x10 <sup>-4</sup> 26. Methylphosphonic acid  400FO-CH <sub>3</sub> - C-COOH  1.3x10 <sup>-4</sup> 27. D(+)-2-Phosphoglyceric  acid  28. Tricarballylic acid  400C-CH <sub>3</sub> - CH <sub>3</sub> - COOH  400FO-CH <sub>3</sub> - COOH  400FO-CH <sub>3</sub> - COOH  400C-CH <sub>3</sub> - COOH  40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.          | Ethylenediphosphonic        | H.O.P - CH CH PO.H.                                            | 1.7x10 <sup>-4</sup> |             | • •                      |                                                                                                  | _                     |
| 24. 2.3-Epoxysuccinic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                             |                                                                |                      | 57.         | •                        | ~                                                                                                | 1.3×10 <sup>-7</sup>  |
| 25. Oxalacetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.          | 2,3-Epoxysuccinic acid      | HOOC COOH                                                      | 1.6×10 <sup>-4</sup> |             | nedicarboxylic acid      |                                                                                                  |                       |
| 26. Methylphosphonic acid 27. D(+)-2-Phosphoglyceric acid 28. Tricarballylic acid 29. Phosphonoformic acid 30. Diglycolic acid 30. Diglycolic acid 31. Adipic acid 32. Citric acid 33. 3-Methylenecyclopropane-trans-1,2-dicarboxylic acid 34. DL-3-Phosphoglyceric acid 35. Cyclopentanecarboxylic acid 36. Methylphosphonic acid 37. Adipic acid 38. Adipic acid 39. Phosphonoformic acid 39. Diglycolic acid 30. Citric acid 30. Diglycolic acid 30. Diglycolic acid 30. Diglycolic acid 31. Adipic acid 32. Citric acid 33. 3-Methylenecyclopropane-trans-1,2-dicarboxylic acid 34. DL-3-Phosphoglyceric acid 35. Cyclopentanecarboxylic acid 36. Cyclopentanecarboxylic acid 37. At 10-5 38. Cyclopentanecarboxylic acid 39. Dl-3-Phosphoglyceric acid 39. Dl-3-Phosphonomethyl-acid 39. Dl-3-Phosphonomethyl-acid 39. Dl-3-Phosphonomethyl-acid 39. Dl-3-Phosphoglyceric acid 39. Dl-3-Phosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.          | Oxalacetic acid             | 0                                                              | 1.6×10 <sup>-4</sup> | 58.         | 2-Phosphonocyclohexa-    |                                                                                                  | 9.25×10 <sup>-8</sup> |
| 27. D(+)-2-Phosphoglyceric acid H <sub>1</sub> O <sub>2</sub> PO-CH — COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26           | Methylphosphonic acid       |                                                                | 1.6x10-4             |             | • •                      | PO <sub>3</sub> H <sub>3</sub>                                                                   |                       |
| acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                             |                                                                |                      | 59.         | Phosphoglycolic acid     | - •                                                                                              | 8.8×10 <sup>-8</sup>  |
| 28. Tricarballylic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •            |                             | H <sub>2</sub> O <sub>3</sub> PO — CH — COOH                   |                      | 60.         | 3-Phosphonopropionic     | $H_2O_3P - CH_2 - COOH$                                                                          | 7.2×10 <sup>-8</sup>  |
| 29. Phosphonoformic acid 30. Diglycolic acid 31. Adipic acid 32. Citric acid 33. 3-Methylenecyclopropane-ine-trans-1,2-dicarboxylic acid 34. DL-3-Phosphoglyceric acid 35. Cyclopentanecarboxylic acid 36. Cyclopentanecarboxylic acid 37. Adipic acid 38. DL-3-Phosphoglyceric acid 39. DL-3-Phosphoglyceric acid 30. Diglycolic acid 40. DC-CH₁-COH 40. Phosphonomethyl) 40. Adipic acid 40. Cyclopentanecarboxylic acid 40. Cyclopentanecarboxylic acid 40. Phosphoenolpyruvic acid 40. Phospholactic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.          |                             |                                                                | 1.3×10 <sup>-4</sup> |             |                          |                                                                                                  |                       |
| 30. Diglycolic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29           | Phosphonoformic acid        |                                                                | 1.2×10-4             | 61.         |                          | ll e                                                                                             | 4.5×10 <sup>-8</sup>  |
| 31. Adipic acid Hooc −CH <sub>2</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | <del>-</del>                |                                                                |                      |             | • •                      | HORMON —C — COON                                                                                 |                       |
| 32. Citric acid    100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | • .                         |                                                                | _                    | 62.         | -                        | II.                                                                                              | 1.3×10-8              |
| 33. 3-Methylenecyclopropane-trans-1,2-dicarboxylic acid  34. DL-3-Phosphoglyceric acid H <sub>1</sub> O <sub>2</sub> PO-CH <sub>2</sub> -CH-COOH  35. Cyclopentanecarboxylic acid  36. Cyclopentanecarboxylic acid  37. 2x10-5  38. 5x10-9  48. 5x10-9  48. 5x10-9  48. 5x10-9  48. 65. (Z)-3-Methylphospho-dhyruvic acid enolpyruvic enolpyruvic acid enolpyruvic acid enolpyruvic acid enolpyruvic acid enolpyruvic acid enolpyruvic acid enolpyruvic enolpyruvic acid enolpyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | -                           | OH                                                             |                      | 62          | •                        | H <sub>2</sub> O <sub>3</sub> PO - C COOH                                                        | 0.4.40.9              |
| 33. 3-Methylenecyclopropane-trans-1,2-dicarboxylic acid acid 34. DL-3-Phosphoglyceric acid H <sub>2</sub> O <sub>2</sub> PO-CH <sub>2</sub> -CH-COOH acid 45. Cyclopentanecarboxylic acid 46. Phosphoenolpyruvic acid 46. Phospholactic acid 46. P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                             | соон                                                           |                      | υ3.         | • •                      | il en                                                        | у.6x10 <sup>-у</sup>  |
| ne-trans-1,2-dicarboxylic acid  acid  34. DL-3-Phosphoglyceric acid H <sub>2</sub> O <sub>2</sub> PO-CH <sub>2</sub> -CH-COOH  acid H <sub>2</sub> O <sub>2</sub> PO-CH <sub>2</sub> -CH-COOH  35. Cyclopentanecarboxylic acid 65. (Z)-3-Methylphospho-enolpyruvic acid 66. Phospholactic acid H <sub>2</sub> O <sub>2</sub> PO-CH-COOH  acid 67. (Z)-3-Bromophospho-H <sub>2</sub> O <sub>2</sub> PO-CH-COOH  67. (Z)-3-Bromophospho-Br-CC-H  87. C-H  4.6x10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33.          | 3-Methylenecyclopropa-      | СООН                                                           | 7.2×10 <sup>-5</sup> | 64.         |                          | Н₂О₃РО − с — соон                                                                                | 8 5v10-9              |
| acid  34. DL-3-Phosphoglyceric ordinary acid of the properties of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                             | H <sub>2</sub> C —COOH                                         |                      |             | - ·                      | ÖH₂                                                                                              | 0.0710                |
| 34. DL-3-Phosphoglyceric 7.1x10-5 enolpyruvic acid 4.6x10-9  acid H <sub>2</sub> O <sub>2</sub> PO-CH <sub>2</sub> —CH — COOH 6.2x10-5 enolpyruvic acid H <sub>2</sub> O <sub>2</sub> PO-CH — COOH 6.2x10-5 GT. (Z)-3-Bromophospho-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                             | OH                                                             | <b>- -</b>           | 65.         |                          | · B                                                                                              | 6.2×10 <sup>-9</sup>  |
| 35. Cyclopentanecarboxylic 66. Phospholactic acid 4,0,50-CH 5.0x10-9 acid 67. (Z)-3-Bromophospho-H <sub>10</sub> ,50-CH 4.6x10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.          | • • •                       |                                                                | 7.1x10 <sup>-5</sup> |             | · · · · ·                | СН3—С—Н                                                                                          | -                     |
| acid 67. (Z)-3-Bromophospho- $H_{2}O_{p}PO-C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25           |                             | ^                                                              | 6 2210-5             | 66.         | Phospholactic acid       | l l                                                                                              | 5.0×10 <sup>-9</sup>  |
| 37. (2)-5-biomophospho-   4.0x10-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33.          | • •                         |                                                                | 0.2XIU-3             | 67          | (Z)-3-Bromonhoenho       | H-O-PO C COOH                                                                                    | 4 6 10 - 0            |
| and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.          |                             | H00C - CH <sub>3</sub> CH <sub>4</sub> CH <sub>4</sub> COOH    | 6.1x10 <sup>-5</sup> |             |                          | · · · · · · · · · · · · · · · · · · ·                                                            | 4.0X1U-2              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                             |                                                                |                      |             | -F)                      |                                                                                                  |                       |

| Table II: Influence of pH on the Activity of Prolidase on Gly-Pro and Its Inhibition by 3-Phosphonopropionic Acid at 25 °C" |                      |                      |                      |                      |                         |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|--|--|--|--|--|--|
| рН                                                                                                                          | 5.5                  | 6.0                  | 6.5                  | 7.0                  | 7.5                     |  |  |  |  |  |  |
| $V_{\rm max}$ ( $\mu$ mol min <sup>-1</sup> mg <sup>-1</sup> )                                                              | 382                  | 1230                 | 1390                 | 1150                 | 915                     |  |  |  |  |  |  |
| $K_{\rm m}$ (Gly-Pro) (M)                                                                                                   | $1.8 \times 10^{-3}$ | $1.7 \times 10^{-3}$ | $1.2 \times 10^{-3}$ | $6.7 \times 10^{-4}$ | $5.2 \times 10^{-4}$    |  |  |  |  |  |  |
| $V_{\rm max}^{\rm m}/K_{\rm m}$                                                                                             | $4.7 \times 10^{-2}$ | $1.6 \times 10^{3}$  | $2.6 \times 10^{3}$  | $3.9 \times 10^{3}$  | $4.0 \times 10^{3}$     |  |  |  |  |  |  |
| $K_i^{ii}(60)^{b}(\mathbf{M})$                                                                                              | $5.7 \times 10^{-8}$ | $5.8 \times 10^{-8}$ | $3.3 \times 10^{-7}$ | $3.2 \times 10^{-6}$ | >1.8 × 10 <sup>-4</sup> |  |  |  |  |  |  |

<sup>a</sup> Values were measured in K<sup>+</sup>-MES buffers (0.01 M), I = 0.1, containing MnCL<sub>2</sub> (3 × 10<sup>-3</sup> M) and glutathine (1.25 × 10<sup>-5</sup> M). <sup>b</sup> Values measured for 3-phosphonopropionic acid (60), uncorrected for the concentration of the active form of the inhibitor.

in the assay. Substrate and inhibitor solutions were normally prepared in the assay buffer, except in the case of a few compounds whose solubility in water was limited, which were taken up in methanol. In these cases 3  $\mu$ L of solvent methanol was introduced per milliliter of assay solution, but these levels of methanol were found to produce no significant inhibition. K<sub>i</sub> values (Table II) were obtained from double-reciprocal plots of the reaction rate as a function of substrate concentration ranging from  $2.5 \times 10^{-4}$  to  $2 \times 10^{-3}$  M.

Purification of Prolidase. Commercial pig kidney prolidase (10 mg, 205 units/mg of protein, suspended in saturated ammonium sulfate) was dissolved in 4 mL of 0.05 M Tris-HCl buffer, pH 8.0, dialyzed against 0.05 M Tris-HCl buffer, pH 8.0, at 4 °C, and applied to a 18 × 250 mm DEAE-Sephacel column. The enzyme was eluted with a linear gradient from 0 to 0.5 M NaCl in 0.05 M Tris-HCl buffer ( $2 \times 250 \text{ mL}$ ), pH 8.0, at 4 °C. A flow rate of 6 mL/h was maintained, and elution was monitored at 280 nm. Each fraction was divided into two parts. The first set of fractions was assayed for prolidase I activity according to Myara (1987) (see Results); after addition of manganese and glutathione, each fraction was incubated as described above and assayed with Gly-Pro as a substrate. The second set of fractions was assayed for prolidase II activity according to Myara (1987) with Met-Pro as a substrate. In this assay manganese and glutathione were added to the enzyme directly before mixing with the substrate, to prevent prolidase II from losing activity. In other respects, the assay was similar to the assay for prolidase I activity.

Determination of  $K_{\rm m}$ ,  $V_{\rm max}$ , and  $K_{\rm i}$  as a Function of pH. Values for  $K_{\rm m}$  and  $V_{\rm max}$  (Table II) were obtained from double-reciprocal plots of the reaction rate as a function of substrate concentration at pH values from 5.5 to 7.5, with other conditions as described above. These experiments were performed in 0.01 M K+-MES buffers of ionic strength 0.1 (maintained by addition of KCl) containing 0.3 mM MnCl<sub>2</sub> and 0.012 mM glutathione. The concentration of Gly-Pro varied from  $2.5 \times 10^{-4}$  to  $2 \times 10^{-3}$  M.  $K_i$  values of 3phosphonopropionic acid (compound 60, pK<sub>a</sub> 2.26; 4.63; 7.75) (Heubel et al., 1979) were determined under the same conditions, as a function of changing pH.

### RESULTS

Earlier assays of prolidase were based on the analysis of reaction mixtures for proline at timed intervals by a variety of discontinuous methods (Chinard, 1952; Mayer & Nordwig, 1973; King et al., 1986). For convenience in searching for prolidase inhibitors, we developed a continuous spectrophotometric assay based on the disappearance of the Gly-Pro peptide chromophore at 222 nm in K+-MES buffer at pH 6.0 (Radzicka & Wolfenden, 1990). The enzyme's activity on this substrate over the pH range between 5.5 and 7.5 is shown in Table II.

Human erythrocytes have been reported to contain two forms of prolidase that differ in specificity with respect to the N-terminal amino acid and can be separated chromatographically (Myara, 1987). It was therefore of interest to determine whether two forms of the enzyme were also present in the pig kidney prolidase purchased from Sigma Chemical Co. When this preparation was desalted and subjected to chromatography on DEAE-Sephacel by Myara's procedure, with a linear salt gradient in Tris-HCl buffer, only one peak was eluted from the column, at 0.14 M NaCl. The relative activities of all fractions on two different substrates were as follows: Gly-Pro after preincubation of the enzyme with Mn<sup>2+</sup> and Met-Pro without such preincubation were found to be invariant and consistent with "prolidase I" character as defined by Myara. Prolidase II, if that had been present, should have been eluted in the neighborhood of 0.26 M NaCl and should have been active against Met-Pro without preincubation with Mn<sup>2+</sup>. Thus, the enzyme used in the present studies was considered equivalent to prolidase I as defined by Myara.

Double-reciprocal plots of the initial reaction velocities against substrate concentration, determined in the presence and absence of inhibitors, were linear, intersecting at the ordinate as expected for competitive inhibition. Table I shows the results obtained with various carboxylic, phosphoric, and phosphonic acid inhibitors in MES buffer at pH 6.0, arranged in order of increasing effectiveness.

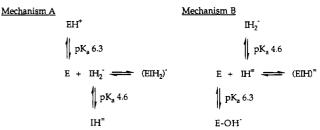
 $K_{\rm m}$  and  $V_{\rm max}$  values for the substrate Gly-Pro (p $K_{\rm a}$  values = 2.8 and 8.65) (Perrin, 1965), in K<sup>+</sup>-MES buffers at several pH values, are shown in Table II along with  $K_i$  values for 3-phosphonopropionic acid (60). The enzyme showed maximal activity at pH values above 7.5, and the effects of varying pH were consistent with the conversion of the enzyme to an inactive form below a p $K_a$  value in the neighborhood of 6.3. Inhibition became more effective with decreasing pH, suggesting that the inhibitor might be bound in a protonated form, or with the release of a hydroxide ion from the enzyme as discussed below.

#### DISCUSSION

trans-1,2-Cyclopentanedicarboxylic acid (55), considered a potential bisubstrate analogue inhibitor (Scheme I), was found to exhibit a  $K_i$  value several orders of magnitude lower than that of the product L-proline (compound 7, Table I) or that reported for carbobenzoxy-Pro (King et al., 1989). On the basis of this initial observation, we examined a variety of carboxylic, phosphoric, and phosphonic acids, with the results shown in order of increasing affinity (or decreasing  $K_i$  value) in Table I.

Within the group of compounds containing only carboxylic acid functions, tightest binding was observed in dicarboxylic acids (compare compound 1 with 16, compound 35 with 55, and compound 28 with 36). Within the group of acyclic dicarboxylic acids, optimal effectiveness was observed when the carboxyl carbon atoms were separated by four bond lengths (for example, compare compound 11 with compounds 16 and 21 and compound 31 with 36). When three bond lengths separated these carbon atoms, activity was little affected by the introduction of a 2,3 double bond in the cis arrangement but was reduced by a trans arrangement (compare compound 6 and compounds 11 and 14). Within the group of alicyclic dicarboxylic acids, inhibitory effectiveness was found to approach an optimum as the size of the ring increased to five members, remaining approximately the same for a six-membered ring (compare compound 15 with 43 and compound 43 with compounds 55 and 57). In their comparison of carbobenzoxy amino acids as prolidase inhibitors, King et al. (1989) observed a similar trend, although inhibition was markedly weaker than in the present series.

Prolidase was found to be very strongly inhibited by both the cis (52) and trans (57) isomers of 1,2-cyclohexanedicarboxylic acid, the trans isomer being somewhat more powerful (Table I). Inspection of molecular models suggests that in the cis isomer the carboxyl carbon atoms in their equatorial and axial positions are separated by roughly 3.08 Å. In the trans isomer, with both carboxyl groups equatorial, the separation is 3.07 Å, whereas in the less abundant isomer with both carboxyl groups axial, the separation is 3.9 Å. In phthalic acid (50), a similarly effective inhibitor with both carboxyl groups in the same plane, the separation between the carboxyl carbon atoms is roughly 3.1 Å.


Phospho- and phosphonocarboxylic acids proved to be even more potent inhibitors than the corresponding dicarboxylic acids (compare compound 11 with 60, compound 21 with 29, and compound 37 with 62), but diphosphonic acids, although more inhibitory than dicarboxylic acids, were less effective than phospho- or phosphonocarboxylic acids (compare compound 11 with 23 and compound 23 with 60; also compare compound 36 with 44 and compound 44 with 48). The exceptional potencies conferred on carboxylic acids by the presence of a single phospho or phosphono group may be due to their higher affinities for an active-site metal ion (see below) and/or to the possibility that the single phospho or phosphono group may adopt a tetrahedral configuration at the phosphorus that resembles an sp<sup>3</sup>-hybridized intermediate in peptide hydrolysis. In earlier work in zinc-containing peptidases (Tronrud et al., 1970; Bartlett & Marlowe, 1987; Hanson et al., 1989), very tight binding of phosphonates was ascribed to this latter property.

Among the most effective inhibitors uncovered by this study were derivatives of phosphoenolpyruvic acid, fluorinated (61), chlorinated (63), or brominated (67) at position 3. Inhibition by each of these potential derivatizing agents was found to be reversible, suggesting that active-site derivatization does not occur.

To obtain information concerning the probable state of ionization of one of the more potent inhibitors in its bound form, we investigated the influence of changing pH on inhibition by 3-phosphonopropionic acid (60). A difficulty raised by the observations in Table I is that no buffer exists that would not be expected to be capable, at least in principle, of interacting with metal ions that are presumably present at the enzyme's active site, and acetate and phosphate buffers were found to inhibit the enzyme strongly at a concentration of 0.01 M. However, we saw little evidence of inhibition by K+-MES buffers even at concentrations (0.1 M) 10-fold higher than those used in the present experiments.

The results obtained in K<sup>+</sup>-MES buffers, presented in Table II, show that inhibition by 3-phosphonopropionic acid [whose  $pK_a$  values are 2.3, 4.6, and 7.75 (Heubel et al., 1979)] was sharply dependent on changing pH, with its  $K_i$  value decreasing by almost two orders of magnitude as the pH was reduced from 7 to 6.1 These findings appear to be formally consistent

Scheme II: Alternative Mechanisms of Binding Involving (A) Proton Release by the Enzyme or (B) Hydroxide Ion Release from the Enzyme That Could Lead to the pH Dependence of Binding Described in the Text



with either of two mechanisms of binding, shown in Scheme II. This scheme incorporates the additional information, from the pH dependence of  $V_{\text{max}}/K_{\text{m}}$  shown in Table II, that below a p $K_a$  value of roughly 6.3 the enzyme appears to gain a proton or lose a hydroxide ion to become inactive. According to mechanism A, 3-phosphopropionic acid is bound as the doubly protonated monoanion. However, this form of the inhibitor becomes rare in solution above pH 4.6, so that this mechanism would require that the true dissociation constant of the inhibitory complex be much lower than the apparent  $K_i$  value that was determined experimentally.<sup>2</sup> According to mechanism B, the inhibitor is bound as a singly protonated dianion, its binding being accompanied by release of a hydroxide ion from the active site.3 Mechanism B appears attractive because the combined evidence in Table I suggests that negatively charged carboxylate and phosphate groups are likely to serve as sites of inhibitor interaction with this metalloenzyme and because this mechanism removes the need to postulate an extremely low dissociation constant for the enzyme-inhibitor

It seems reasonable to suppose that prolidase may share some mechanistic resemblance to other metallopeptidases such as thermolysin and carboxypeptidase A. King et al. (1989) have shown that prolidase is active on the trans isomer of the substrate and have speculated that the substrate may be bound through its amide oxygen and proline carboxylate groups to the octahedrally coordinated Mn<sup>2+</sup> in the active site of prolidase. Oxalate, with a similar separation between its carbonyl oxygen atoms, has recently been shown to form a complex with pyruvate-phosphate dikinase involving octahedral coordination of manganese at the active site (Kofron, et al., 1988). Bound in a similar manner, the bifunctional acids of the present study might be expected to serve as strong ligands of prolidase. Furthermore, the unusual affinities of the present phosphorus-containing inhibitors raise the additional possibility that these compounds may serve as transition-state analogues as discussed above. Scheme III shows some possible binding interactions of substrates, products, and inhibitors with manganese at the active site of prolidase. All of the more potent inhibitors uncovered by the present investigation appear to be capable of adopting a configuration resembling that of

<sup>&</sup>lt;sup>1</sup> In a preliminary report, of which we became aware after the present work was complete, Lacoste et al. (1989) describe the relatively weak inhibition of prolidase by compounds 26, 29, 53, and 60 at pH 8. Table II shows that at pH 8 only a small inhbitory effect would be expected for inhibitors of this type.

<sup>&</sup>lt;sup>2</sup> This argument applies with greater force to the triply protonated free acid, whose concentration becomes vanishingly small at pH values much

<sup>&</sup>lt;sup>3</sup> In view of the ability of Mn<sup>+2</sup> to form strong complexes with organic acids, we considered the trivial possibility that the present inhibitors might reduce the activity of the enzyme by completely removing manganese from the active site in a reversible equilibrium process. For the more potent inhibitors, that possibility could be ruled out for stoichiometric reasons, because Mn<sup>+2</sup> was present in solution at concentrations  $[(1.3-3.3) \times 10^{-4} \text{ M}]$  several orders of magnitude higher than those of inhibitors (10<sup>-7</sup> M or lower). Accordingly, inhibition presumably occurs by complex formation at the active site.

Scheme III: One Potential Mechanism of Action of Prolidase, Showing the Resemblence of the Possible Intermediate Shown in Brackets to Enzyme Complexes Formed by Anions of Several Inhibitors That May Displace Hydroxide Ion from Manganese at the Enzymes's Active Site

an sp<sup>3</sup>-hybridized oxyanion, shown in brackets, that may be generated during the course of substrate hydrolysis.

#### **ACKNOWLEDGMENTS**

We are grateful to Drs. Marion H. O'Leary and J. A. Peliska for providing compounds 51, 56, 61, 63, and 65-67 and to Dr. Damian Grobelny for providing compounds 39 and 58.

# REFERENCES

Bartlett, P. A., & Marlowe, C. K. (1983) *Biochemistry 22*, 4618.

Bergmann, M., & Fruton, J. S. (1937) J. Biol. Chem. 117, 189.

Brown, H. C., McDaniel, D. H., & Häfliger, O. (1955) in Determination of Organic Structures by Physical Methods (Braude, E. A., & Nachod, F. C., Eds.) pp 567-662, Academic Press, New York.

Byers, L. D., & Wolfenden, R. (1972) J. Biol. Chem. 254, 606.

Chinard, F. P. (1952) J. Biol. Chem. 199, 265.

Cushman, D. W., Cheung, H. S., Sabo, E. F., & Ondetti, M. A. (1977) *Biochemistry* 16, 5484.

Davies, N. C., & Smith, E. L. (1957) J. Biol. Chem. 224, 261.
Fleury, P., & Courtois, J. (1941) Bull. Soc. Chim. Fr. 8, 69.
Hanson, J. E., Kaplan, A. P., & Bartlett, P. A. (1989) Biochemistry 28, 6294.

Heubel, P. H. C., & Popov, A. I. (1979) J. Solution Chem. 8, 615.

Kaloustian, V. M. D., Freij, B. J., & Kurvan, A. K. (1982) Dermatologica 164, 293.

King, G. F., Middlehurst, C. R., & Kuchel, P. W. (1986) Biochemistry 25, 1054.

King, G. F., Crosley, M. J., & Kuchel, P. W. (1989) Eur. J. Biochem. 180, 377.

Kofron, J. L., Ash, D. E., & Reed, G. H. (1988) *Biochemistry* 27, 4781.

Lacoste, A.-M., & Neuzil, E. (1989) Biochem. Soc. Trans. 17, 782.

Mayer, H., & Nordwig, A. (1973) *Hoppe-Seyler's Z. Physiol. Chem. 354*, 371.

Myara, I. (1987) Clin. Chim. Acta 170, 263.

Perrin, D. D. (1965) Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London.

Radzicka, A., & Wolfenden, R. (1990) J. Am. Chem. Soc. 112, 1248.

Smith, E. L., & Bergmann, M. (1944) J. Biol. Chem. 153, 627.

Tronrud, D. E., Monzingo, A. F., & Matthews, B. W. (1986) Eur. J. Biochem. 157, 261.

Walter, R., Simmons, W. H., & Yoshimoto, T. (1980) Mol. Cell. Biochem. 30, 111.

Wolfenden, R. (1972) Acc. Chem. Res. 5, 10.